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Abstract

In this paper, we establish a generalized volume comparison theorem for Lorentzian warped products, where we have an integral
curvature bound condition.
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1. Introduction

The volume comparison theorem for metric ball B(x, r) has been one of the most important tools in the comparison
geometry of Riemannian manifolds, and it has been developed in various directions [3,11,12,14].

Most such developments have their basis in the Bishop–Gromov volume comparison theorem [10] and the main
tools for these investigations have been Jacobi fields and index form arguments, even though the Riccati equation
techniques are recently used very often for the various volume calculations.

Inspired by these works in Riemannian geometry, Ehrlich et al. [7] employed the Riccati equation techniques to
compare the volume of the compact sets in a Lorentzian manifold with that of the corresponding compact region in
a Lorentzian space form. The Riccati equation which was used in [7] has been called the ‘Raychaudhuri equation’ in
General Relativity and it plays a crucial role in the proofs of the singularity theorems of spacetime.

One of the main assumptions in the spacetime version of the Bishop–Gromov volume comparison given in [7] is
on the Ricci curvature bounds as follows:

Ric(v, v) ≥ (n − 1)k > 0,

for all timelike unit vectors v and for some k > 0.
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This curvature condition implies the ‘strong energy condition’ which appears in many important results in the
classical General Relativity.

But, recent observations in cosmology indicate that two thirds of the density in the Universe is contained in a new
form which violates the strong energy condition and is referred to as ‘dark energy’ (see [6]). In addition, the strong
energy condition implies that there can be no acceleration in the expanding Universe, which is also violated by the
contemporary observations in cosmology (see [13,15]).

For these reasons, the strong energy condition is not used very often any longer. Indeed, if we go into the quantum
world, it is possible that some other energy conditions are also violated locally.

Alternatively, however, the averaged energy density of matter in the Universe turns out to be meaningful in
contemporary observational cosmology (see [4]). From these points of view, it is interesting to introduce the curvature
invariant in [12], which is defined to measure the amount of curvature below a given number in an integral sense.

In [11,12], the authors generalized the classical Bishop–Gromov volume comparison estimate to a situation where
one only has an integral bound for the part of the Ricci curvature which lies below a given number. Inspired by
this work, we shall establish the spacetime version of this generalized volume comparison theorem by following the
arguments in [11].

In addition to the curvature conditions, we also consider a more generalized model space for comparison which
need not have constant curvature throughout the spacetime. This generalization is reasonable because the physical
Universe need not have constant curvature throughout the spacetime. Indeed, the spacetime with constant curvature
represents a universe which contains nothing but the vacuum energy (see p. 328 in [5] for details).

But, in our Universe, we have ordinary matter and radiation as well as a possible vacuum energy. To describe the
real Universe, it turns out to be more reasonable to posit that the Universe is spatially homogeneous and isotropic but
evolving in time. We therefore consider the generalized Robertson–Walker spacetime with warped product metric as
our model space for comparison.

Indeed, the spacetime with warped product metric is one of the typical examples of globally hyperbolic spacetime
and has played an important role in the asymptotic behavior of spacetimes [1].

Consequently, it is the purpose of this paper that we establish a generalized volume comparison theorem for
Lorentzian warped products, where we have an integral curvature bound condition.

2. Preliminaries and main theorem

Let (M, g) be an arbitrary time-oriented spacetime of dimension n ≥ 2 with a nondegenerate metric g of signature
(−,+, . . . ,+) for each tangent space of M .

We say that x ∈ M chronologically (resp. causally) precedes y ∈ M if there is a timelike (resp. causal) path from
x to y. We can then define the chronological future I +(x) and the causal future J+(x) as follows.

I +(x) = {y ∈ M |x chronologically precedes y},

J+(x) = {y ∈ M |x causally precedes y}.

Recall that the Lorentzian distance function dx : M → [0,+∞] is defined by setting

dx (y) = sup{L(c)|c is a future directed causal curve from x to y},

if y ∈ J+(x) and setting dx (y) = 0 if y is not in J+(x). Here, L(c) is the length of the causal curve c : [a, b] → M
defined by

L(c) =

∫ b

a

√
−g(c′(t), c′(t))dt.

We say that a spacetime is globally hyperbolic if it admits a Cauchy surface which is, by definition, a subset of
M satisfying that every inextendible causal curve intersects it exactly once (by definition, a piecewise smooth curve
c : [0, b) → M is ‘extendible’ provided that it has a continuous extension c̃ : [0, b] → M for b ≤ ∞. Of course, c is
called ‘inextendible’ if it is not extendible).

It is indicated in [2] that Geroch [9] has established the following important structure theorem for globally
hyperbolic spacetimes.
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Theorem 2.1 ([2]). If (M, g) is a globally hyperbolic spacetime of dimension n, then M is homeomorphic to R × S,
where S is an (n − 1)-dimensional topological submanifold of M and for each t, {t} × S is a Cauchy surface.

Unlike the case of complete Riemannian manifolds, we are not able to connect a chronologically related pair of
points by a maximal timelike geodesic segment only with the assumption of timelike geodesic completeness. Globally
hyperbolic spacetimes, however, have the desired property that for any given pair of points x, y with y ∈ J+(x), there
exists a maximal causal geodesic segment from x to y. This property is, of course, very important in order to do many
standard geometric constructions and we, therefore, always assume that (M, g) is globally hyperbolic.

Now we introduce some notations as in [7,8].
First, for each x ∈ M , let Fut(Tx M) denote the set of all future directed timelike vectors v ∈ Tx M such that

expx v is defined. Then for any unit vector v ∈ Fut(Tx M), we have a timelike radial geodesic γv(t) = expx tv with
γv(0) = x, γ ′

v(0) = v. Put

cutv(x) = sup{t ≥ 0|L(γv|[0,t]) = dx (γv(t))} > 0,

where dx is the Lorentzian distance function which is continuous and finite valued, since (M, g) is globally hyperbolic.
In order to obtain finite integrals over distance wedges, we let, as in [7], S(x) = {v ∈ Fut(Tx M)|g(v, v) = −1}

and for any compact set D of S(x), define the D-distance wedge B D
x (r) as follows:

B D
x (r) = {expx tv|v ∈ D, 0 ≤ t ≤ r}.

Note also that if we denote injD(x) = inf{cutv(x)|v ∈ D}, then there exists w ∈ D with cutw(x) = injD(x) > 0,
since v → cutv(x) is lower semicontinuous.

Now we can establish our warped product comparison model as follows:
Let first h be the Riemannian metric induced on S(x) as a subset of Tx M with the Minkowski metric induced by

g|Tx M .
Consider then a warped product space M = (0, a)× f S(x) with Lorentzian metric g = −dt2

+ ( f (t))2h, where
0 < a < injD(x) and f is a warping function satisfying the Jacobi differential equation

f ′′(t)+ K (t) f (t) = 0, f (0) = 0, f ′(0) = 1.

In the above, we set f (t) > 0 on (0, a) and K : (0, a) → R is a continuous function which serves as a prescribed
curvature function. Indeed, it is well known that for any unit timelike vector u at (t, x) ∈ M which is normal to
{t} × S(x), we have the Ricci curvature of M :

Ric(u, u) = (n − 1)K (t)

(see [8]). The D-distance wedge B
D
(r) in M which corresponds to B D

x (r) in M is defined as follows.

B
D
(r) = {(t, v) ∈ M(= (0, a)× f S(x))|0 ≤ t ≤ r, v ∈ D}.

Now, by the arguments in Section 4 in [7] and [8], we can express the volume V D
x (r)(resp. V

D
(r)) of

B D
x (r)(resp. B

D
(r)) as follows.

V D
x (r) =

∫ r

0

∫
D
ω(t, v)dvdt,

V
D
(r) =

∫ r

0

∫
D
ωK (t)dvdt,

where dv is the volume element of S(x) with the induced metric h in Tx M .
In the above, we know that ω(t, v) = { jv(t)}n−1 for some positive function jv(t) which is defined by a Jacobi

tensor and satisfies

jv(t) > 0 on (0, injD(x)) and jv(0) = 0, j ′v(0) = 1

(for details, see [7]).
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We also know that ωK (t) = { f (t)}n−1, where we recall that f satisfies the properties that f (t) > 0 on (0, a) and
f (0) = 0, f ′(0) = 1 (see [8]).

Furthermore, if we let

hv(t) = (n − 1)
j ′v(t)

jv(t)
=
ω′(t, v)

ω(t, v)
,

then we obtain the following inequality from the Raychaudhuri equation of General Relativity (see [7]).

h′
v(t)+

h2
v(t)

n − 1
≤ −Ric−(t, v), (2.1)

where Ric−(t, v) = inf{Ric(w,w)|w is a timelike unit vector in Ty M, y = expx tv}. Moreover, it is easy to check
that if we let

hK (t) = (n − 1)
f ′(t)

f (t)
=
ω′

K (t)

ωK (t)
,

then hK (t) satisfies the following equation.

h′

K (t)+
h2

K (t)

n − 1
= −(n − 1)K (t). (2.2)

Note that both hv(t) and hK (t) have a pole of order one at t = 0 and limt→0(hK (t)− hv(t)) = 0 for each v.
In order to estimate the volume comparison, we need to define the curvature invariant which measures the averaged

quantities of the Ricci curvature below (n − 1)K (t) as follows;
First, we let

ρ(y)(= ρ(t, v)) = max{(n − 1)K (t)− Ric−(t, v), 0},

where y = expx (tv), v ∈ S(x) for some t ≥ 0.
Then we define for any given R < injD(x) and p > 0,

k(x, p, D, R, K ) =

∫ R

0

∫
D
(ρ(t, v)+ K−(t))

pωdvdt,

where K−(t) = max{−K (t), 0}.
Now we are in a position to state our main result as follows.

Theorem 2.2. Let (M, g) be a globally hyperbolic spacetime of dimension n ≥ 2 and (M(= (0, a)× f S(x)), g) be
a warped product comparison model as above. Then given p > n/2, and R < a < injD(x), there exists a constant
C(n, p, K , R, D) which is nondecreasing in R such that for r < R we have(

V D
x (R)

V
D
(R)

) 1
2p

−

(
V D

x (r)

V
D
(r)

) 1
2p

≤ C(n, p, K , R, D)k(x, p, D, R, K )
1

2p ,

where V D
x (r)(resp. V

D
(r)) is the volume of the D-distance wedge B D

x (r)(resp. B
D
(r)).

Furthermore, when r = 0, we obtain

V
D
x (R) ≤ (1 + C(n, p, K , R, D)k(x, p, D, R, K )

1
2p )2pV

D
(R).

Remark 2.1. (1) When we have Ric(v, v) ≥ (n − 1)K (t) ≥ 0 on (0, a) for all timelike vectors v, we obtain
k(x, p, D, R, K ) = 0 in the above theorem and the inequalities in Theorems 4.3 and 4.4 in [7] follow immediately.

(2) If we have K (t) ≤ 0 on (0, a), then we will see later (Remark 3.1) that the above theorem remains true when
we replace the curvature invariant k(x, p, D, R, K ) by

‖ρ‖
p
L p(B D

x (R))

(
=

∫ R

0

∫
D
ρ(t, v)pωdvdt

)
.
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3. Proof of the main theorem

Our proof basically follows along the lines in [11].
We first define ψ(t, v) = max{hv(t)− hK (t), 0} for any t ∈ [0, a), v ∈ D and put ρK (t, v) = ρ(t, v)+ K−(t).
Then from (2.1) and (2.2), we know that ψ satisfies

ψ ′
+

ψ2

n − 1
+

2hKψ

n − 1
≤ ρ. (3.1)

We also know that ψ(0, v) = 0 for any v. By modifying the proof of Theorem 2.1 in [11], we now show the
following

Lemma 3.1. For any r < a, p > n/2 and fixed v ∈ D, we have∫ r

0
ψ2p(t, v)ωdt ≤ CK (n, p, r)

∫ r

0
ρ

p
K (t, v)ωdt,

where CK (n, p, r) is a constant depending on the function K , n, p, and r.

Proof. As in [11], we multiply (3.1) by ψ2p−2ω and integrate from 0 to r , then we get

1
2p − 1

ψ2p−1(r)+

(
1

n − 1
−

1
2p − 1

)∫ r

0
ψ2pω +

(
2

n − 1
−

1
2p − 1

)∫ r

0
ψ2p−1hKω ≤

∫ r

0
ρψ2p−2ω.

Since hK (t)(=
f ′

f ) is continuous on (0, r ] and hK (0) = +∞, we can put hmin
K (r) := mint∈[0,r ]{hK (t)} ∈ R.

Thus, the above inequality implies(
1

n − 1
−

1
2p − 1

)∫ r

0
ψ2pω ≤

∫ r

0
ρψ2p−2ω − hmin

K (r)

(
2

n − 1
−

1
2p − 1

)∫ r

0
ψ2p−1ω. (3.2)

Now we consider two cases as follows.
Case 1: hmin

K (r) ≥ 0.
In this case, from (3.2) and by using the Hölder inequality, we have(

1
n − 1

−
1

2p − 1

)∫ r

0
ψ2pω ≤

∫ r

0
ρψ2p−2ω

≤

(∫ r

0
ρ pω

) 1
p
(∫ r

0
ψ2pω

)1−
1
p

,

from which we immediately obtain the desired result with ρ instead of ρK (≥ ρ):∫ r

0
ψ2pω ≤

(
1

n − 1
−

1
2p − 1

)−p ∫ r

0
ρ pω.

Case 2: hmin
K (r) < 0.

Let

H+
:= {t ∈ (0, r) | hK (t) ≥ 0},

H−
:= {t ∈ (0, r) | hK (t) < 0}.

We now estimate (ψ2p−1ω)(t) for any t ∈ (0, r) = H+
⋃

H−.
First, we consider the case t ∈ H+.
Put b = sup{s|s < t, hK (s) < 0}. (If {s|s < t, hK (s) < 0} is empty, then we just put b = 0.) Then it is easy to

check that hK (s) > 0 on (b, t) and that hK (b) = 0.
We also introduce two auxiliary functions h̃K := (hK )+ and ψ̃ := (hv − h̃K )+, where u+ = max{u, 0} for any

function u. Since ψ̃(s) = (hv)+(s) if s ∈ H− and (hv)+ satisfies

(hv)
′
+ +

(hv)2+
n − 1

≤ (−Ric−)+,



908 J.-G. Yun / Journal of Geometry and Physics 57 (2007) 903–912

we can easily check that

ψ̃ ′
+

ψ̃2

n − 1
+

2h̃K ψ̃

n − 1
≤ ρK , (3.3)

ψ̃(0) = 0.

Multiplying this inequality by ψ̃2p−2ω and integrating from 0 to b, we obtain

1
2p − 1

(ψ̃2p−1ω)(b)+

(
1

n − 1
−

1
2p − 1

)∫ b

0
ψ̃2pω

+

(
2

n − 1
−

1
2p − 1

)∫ b

0
ψ̃2p−1h̃Kω ≤

∫ b

0
ρK ψ̃

2p−2ω. (3.4)

Note that ψ̃(b) = ψ(b) since hK (b) = 0 and that ψ̃ ≤ ψ since hK ≤ h̃K .
So from the above inequality (3.4), we have

1
2p − 1

(ψ2p−1ω)(b) ≤

∫ b

0
ρK ψ̃

2p−2ω

≤

(∫ b

0
ρ

p
Kω

) 1
p
(∫ b

0
ψ2pω

)1−
1
p

. (3.5)

Now multiplying the inequality (3.1) by ψ2p−2ω and integrating from b to t , we obtain

1
2p − 1

(ψ2p−1ω)(t)−
1

2p − 1
(ψ2p−1ω)(b)+

(
1

n − 1
−

1
2p − 1

)∫ t

b
ψ2pω

+

(
2

n − 1
−

1
2p − 1

)∫ t

b
ψ2p−1hKω ≤

∫ t

b
ρKψ

2p−2ω. (3.6)

Thus we have

1
2p − 1

(ψ2p−1ω)(t) ≤
1

2p − 1
(ψ2p−1ω)(b)+

∫ t

b
ρKψ

2p−2ω

≤ 2
(∫ r

0
ρ

p
Kω

) 1
p
(∫ r

0
ψ2pω

)1−
1
p

(by (3.5)). (3.7)

We next consider the case t ∈ H−.
Now, we let c = sup{s|s < t, hK (s) > 0} and note that hK (c) = 0. Then by the same arguments as in (3.4) and

(3.5), we obtain

1
2p − 1

(ψ2p−1ω)(c) ≤

(∫ r

0
ρ

p
Kω

) 1
p
(∫ r

0
ψ2pω

)1−
1
p

. (3.8)

Now note that if we drop the ψ2 term in the inequality (3.1) and multiply through by ψ2p−2, then we have

ψ ′ψ2p−2
+

2
n − 1

ψ2p−1hmin
K (r) ≤ ρψ2p−2.

We multiply this by (2p − 1) and the integrating factor φ(t) = exp(hmin
K (r) 2(2p−1)

n−1 t) < 1 and write this as

(φψ2p−1)′ ≤ (2p − 1)φρψ2p−2

≤ (2p − 1)ρψ2p−2.

If we multiply this inequality by ω and integrate from c to t , we get

(φψ2p−1ω)

∣∣∣t
c
−

∫ t

c
hφψ2p−1ω ≤ (2p − 1)

∫ t

c
ρψ2p−2ω, (3.9)
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which can be reduced to

(φψ2p−1ω)

∣∣∣t
c

≤ (2p − 1)
(∫ t

c
h+ψ

2p−1ω +

∫ t

c
ρψ2p−2ω

)
.

Here, we used the fact that φ(t) < 1, h < h+.
Note that if we follow the same process as in Case 1 with (3.3) instead of (3.1), then we have∫ r

0
ψ̃2pω ≤

(
1

n − 1
−

1
2p − 1

)−p ∫ r

0
ρ

p
Kω.

So, noting that h+ = ψ̃ on (c, t), we have the following inequality.∫ t

c
h+ψ

2p−1ω ≤

(∫ r

0
ψ̃2pω

) 1
2p
(∫ r

0
ψ2pω

)1−
1

2p

≤

(
1

n − 1
−

1
2p − 1

)−
1
2
(∫ r

0
ρ

p
Kω

) 1
2p
(∫ r

0
ψ2pω

)1−
1

2p

. (3.10)

Consequently, we obtain from (3.9) that

(φψ2p−1ω)(t) ≤ (ψ2p−1ω)(c)+ (2p − 1)
(∫ t

c
h+ψ

2p−1ω +

∫ t

c
ρψ2p−2ω

)
≤ (2p − 1)

(∫ r

0
ρ

p
Kω

) 1
p
(∫ r

0
ψ2pω

)1−
1
p

(by (3.8))

+ (2p − 1)
(

1
n − 1

−
1

2p − 1

)−
1
2
(∫ r

0
ρ

p
Kω

) 1
2p
(∫ r

0
ψ2pω

)1−
1

2p

(by (3.10))

+ (2p − 1)
(∫ r

0
ρ

p
Kω

) 1
p
(∫ r

0
ψ2pω

)1−
1
p

.

The above inequality together with (3.7) gives the estimate of (ψ2p−1ω)(t) for any t ∈ (0, r) as follows.

(ψ2p−1ω)(t) ≤ C1(p, n, r, K )

{(∫ r

0
ρ

p
Kω

) 1
p
(∫ r

0
ψ2pω

)1−
1
p

+

(∫ r

0
ρ

p
Kω

) 1
2p
(∫ r

0
ψ2pω

)1−
1

2p
}
.

Now we have arrived at the same situation as in [11] and we can apply the rest of the arguments in [11] (see pp.
280–281 in [11]) to conclude the desired result. �

Remark 3.1. If we have K (t) ≤ 0, then f ′′(t) = −K (t) f (t) ≥ 0. Thus we know that f ′(t) is increasing and is
positive, since f ′(0) = 1. This, in turn, implies that hK (t) = (n − 1) f ′(t)

f (t) is positive. So we have hmin
K (r) ≥ 0

and obtain the result in Lemma 3.1 with ρ instead of ρK as mentioned in Remark 2.1(2). Note also that if we have
K (t) ≥ 0, then clearly we have ρ = ρK .

Now we prove an analogue of Lemma 2.1 in [12] in order to apply Lemma 3.1 to our settings.

Lemma 3.2. For the volume ratio V D
x (r)

V
D
(r)
, (0 < r < a) we have

d
dr

(
V D

x (r)

V
D
(r)

)
≤ CK (n, r)

(
V D

x (r)

V
D
(r)

)1−
1

2p
(∫

B D
x (r)

ψ2pdvol

) 1
2p

{V
D
(r)}−

1
2p .

Proof. We first calculate the following, as in [12].

d
dr

∫
D ω(r, v)dv∫
D ωK (r)dv

≤
1

volh(D)

∫
D

d
dr

(
ω(r, v)

ωK (r)

)
dv

≤
1

volh(D)

∫
D
ψ
ω

ωK
dv.
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Thus for t ≤ r , we have∫
D(x) ω(r, v)dv∫

D ωK (r)dv
−

∫
D ω(t, v)dv∫
D ωK (t)dv

≤
1

volh(D)

∫ r

t

∫
D
ψ
ω

ωK
dvds,

which implies∫
D
ω(r, v)dv

∫
D
ωK (t)dv −

∫
D
ωK (r)dv

∫
D
ω(t, v)dv

≤
1

volh(D)

(∫
D
ωK (t)dv

)(∫
D
ωK (r)dv

)∫ r

t

∫
D
ψ
ω

ωK
dvds

≤

(∫
D
ωK (r)dv

)∫ r

t

∫
D
ψ
ωK (t)

ωK (s)
ω(s, v)dvds

= volh(D)
∫ r

t

∫
D

ωK (t)ωK (r)

ωK (s)
ψω(s, v)dvds. (3.11)

Now we consider mint≤s≤r {ωK (s)} and note that mint≤s≤r {ωK (s)} = ωK (t) for sufficiently small r > 0, since
ωK (0) = 0 and ωK (t) is increasing for small t > 0. (This follows immediately from ω′(t) = (n−1) f n−2(t) f ′(t) > 0
for small t > 0.)

Thus we can put

Fr (t) =
ωK (t)ωK (r)

min
t≤s≤r

{ωK (s)}
,

which is well defined (for sufficiently small r , we know that Fr (t) = ωK (r)).
So we have, from (3.11),∫

D
ω(r, v)dv

∫
D
ωK (t)dv −

∫
D
ωK (r)dv

∫
D
ω(t, v)dv

≤ volh(D)Fr (t)
∫ r

t

∫
D
ψωdvds

≤ volh(D)Fr (t)

(∫ r

t

∫
D
ψ2pωdvds

) 1
2p
(∫ r

t

∫
D
ωdvds

)1−
1

2p

≤ volh(D)Fr (t)

(∫
B D

x (r)
ψ2pdvol

) 1
2p

(vol(B D
x (r)))

1−
1

2p .

Now we calculate

d
dr

(
V D

x (r)

V
D
(r)

)
=

1

{V
D
(r)}2

{(∫
D
ω(r, v)dv

)(∫ r

0

∫
D
ωK (t)dvdt

)
−

(∫
D
ωK (r)dv

)(∫ r

0

∫
D
ω(t, v)dvdt

)}
.

Observe that the numerator can be written as∫ r

0

{(∫
D
ω(r, v)dv

)(∫
D
ωK (t)dv

)
−

(∫
D
ωK (r)dv

)(∫
D
ω(t, v)dv

)}
dt

≤

∫ r

0

volh(D)Fr (t)

(∫
B D

x (r)
ψ2pdvol

) 1
2p

(vol(B D
x (r)))

1−
1

2p

 dt

= volh(D)(V D
x (r))

1−
1

2p

(∫
B D

x (r)
ψ2pdvol

) 1
2p ∫ r

0
Fr (t)dt.
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Thus we have

d
dr

(
V D

x (r)

V
D
(r)

)
≤

volh(D)(V D
x (r))

1−
1

2p (
∫

B D
x (r)

ψ2pdvol)
1

2p
∫ r

0 Fr (t)dt

{V
D
(r)}2

=

(
V D

x (r)

V
D
(r)

)1−
1

2p
(∫

B D
x (r)

ψ2pdvol

) 1
2p volh(D)

∫ r
0 Fr (t)dt

V
D
(r)

{V
D
(r)}−

1
2p . (3.12)

Now we observe that

volh(D)
∫ r

0 Fr (t)dt

V
D
(r)

=
volh(D)

∫ r
0 Fr (t)dt∫

D

∫ r
0 ωK (s)dsdv

=

∫ r
0 Fr (t)dt∫ r

0 ωK (s)ds
.

Since Fr (s) = ωK (r) for small r > 0, we have∫ r
0 Fr (t)dt∫ r

0 ωK (s)ds
=

rωK (r)∫ r
0 ωK (s)ds

,

for small r > 0. But if r > 0 is small enough, then we have ωK (r) ∼ rn−1, which implies that

rωK (r)∫ r
0 ωK (s)ds

→ n

as r → 0. Thus, we can say that for any given r , there exists a constant CK (n, r) > 0 such that

CK (n, r) = max
0≤t≤r

∫ t
0 Ft (s)ds∫ t

0 ωK (s)ds
.

If we let G(r) =
V D

x (r)

V
D
(r)

, then we get from (3.12) that

G ′(r) ≤ G(r)1−
1

2p CK (n, r){V
D
(r)}−

1
2p

(∫
B D

x (r)
ψ2pdvol

) 1
2p

, (3.13)

which proves Lemma 3.2. �

Now, for any r < R < a if we integrate (3.13) from r to R, we obtain (using Lemma 3.1) that

2pG(R)
1

2p − 2pG(r)
1

2p ≤ α

∫ R

r
g(s)ds,

where α = CK (n, R){k(x, p, D, R, K )}
1

2p , and g(s) = {V
D
(s)}−

1
2p .

Consequently, we have

G(R)
1

2p − G(r)
1

2p ≤
CK (n, R)

2p

(∫ R

0
{V

D
(s)}−

1
2p ds

)
{k(x, p, D, R, K )}

1
2p .

Since V
D
(s) ∼ sn for small s, we know that

∫ R
0 {V

D
(s)}−

1
2p ds < ∞, if p > n/2.

So we can put C(n, p, K , R, D) =
CK (n,R)

2p

∫ R
0 {V

D
(s)}−

1
2p ds and get the desired estimate in Theorem 2.2. The

second inequality in Theorem 2.2 follows immediately if we put r = 0 and use the fact G(0) = 1.
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